Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Toxicological Research ; : 7-14, 2013.
Article in English | WPRIM | ID: wpr-118070

ABSTRACT

Betaine supplementation has been shown to alleviate altered glucose and lipid metabolism in mice fed a high-fat diet or a high-sucrose diet. We investigated the beneficial effects of betaine in diabetic db/db mice. Alleviation of endoplasmic reticulum (ER) and oxidative stress was also examined in the livers and brains of db/db mice fed a betaine-supplemented diet. Male C57BL/KsJ-db/db mice were fed with or without 1% betaine for 5 wk (referred to as the db/db-betaine group and the db/db group, respectively). Lean non-diabetic db/+ mice were used as the control group. Betaine supplementation significantly alleviated hyperinsulinemia in db/db mice. Betaine reduced hepatic expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha, a major transcription factor involved in gluconeogenesis. Lower serum triglyceride concentrations were also observed in the db/db-betaine group compared to the db/db group. Betaine supplementation induced hepatic peroxisome proliferator-activated receptor alpha and carnitine palmitoyltransferase 1a mRNA levels, and reduced acetyl-CoA carboxylase activity. Mice fed a betaine-supplemented diet had increased total glutathione concentrations and catalase activity, and reduced lipid peroxidation levels in the liver. Furthermore, betaine also reduced ER stress in liver and brain. c-Jun N-terminal kinase activity and tau hyperphosphorylation levels were lower in db/db mice fed a betaine-supplemented diet, compared to db/db mice. Our findings suggest that betaine improves hyperlipidemia and tau hyperphosphorylation in db/db mice with insulin resistance by alleviating ER and oxidative stress.


Subject(s)
Animals , Humans , Male , Mice , Acetyl-CoA Carboxylase , Betaine , Brain , Carnitine O-Palmitoyltransferase , Catalase , Diet , Diet, High-Fat , Endoplasmic Reticulum , Gluconeogenesis , Glucose , Glutathione , Hyperinsulinism , Hyperlipidemias , Insulin Resistance , JNK Mitogen-Activated Protein Kinases , Lipid Metabolism , Lipid Peroxidation , Liver , Oxidative Stress , PPAR alpha , PPAR gamma , RNA, Messenger , Transcription Factors
2.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1456085

ABSTRACT

The breast implant procedure is one of the most performed into Plastic Surgery and the contracture that occurs the capsule formed around the breast implants one of most frequent complication. We describe here one experimental model of capsule contracture in rats.


O procedimento cirúrgico implante de silicone mamário é um dos mais realizados dentro da Cirurgia Plástica e a contratura que ocorre na cápsula formada ao redor do implante é uma de suas maiores complicações. Descrevemos aqui um modelo experimental de contratura capsular em ratas.

SELECTION OF CITATIONS
SEARCH DETAIL